Как решать уравнения реакции

Вопрос А12 теста ЕГЭ по химии — «Взаимосвязь неорганических веществ»

Если посмотрите это задание в вариантах ЕГЭ, то там дана схема превращений неорганических веществ и в ответах даны варианты реагентов. Как решать такие задачи?

 
Темы, которые нужно знать:

Составить уравнения реакций по схеме превращений

На самом деле это не так и сложно. Для этого необходимо знать типы реакций и основные условия их протекания.

1. Химические реакции соединения

  • Реакция горения — одна из самых распространенных химических реакций соединения — все вещества горят — и металлы, и неметаллы:

4Na + O2 = 2Na2O

S + O2 = SO2

  • Химические реакции соединения металла и неметалла — приводят к образованию солей:
  • Fe + S = FeS
  • Fe + Cl2= FeCl3
  •  
     (а вот этот момент надо запомнить (или выучить) — железо при взаимодействии с соляной кислотой дает хлорид железа (II), а с хлором — простым веществом — хлорид железа (III))
     
  • Неметаллы также могут взаимодействовать между собой:

2P + 5Cl2 = 2PCl5

2. Составление уравнений реакций по схеме —  реакции разложения

  • Обычно уравнения реакций разложения солей дают соответствующие основные и кислотные оксиды:
  1. Fe2(SO4)3 = Fe2O3 + 3 SO3
  2. CaCO3 = CaO + CO2
  3.  
    Исключения:
     
  1. по-другому разлагаются нитраты — в зависимости от металла, входящего в состав соли. Это можно прочитать  ;
  2. хлорид аммония — NH4Cl — разлагается до аммиака и соляной кислоты:  NH4Cl = NH3 + HCl;
  3. не разлагаются сульфаты
  4. соли, образованные сильными окислителями:
  • KMnO4= K2MnO4 + MnO2 + O2
     
  • 4K2Cr2O7 = 4K2CrO4 + 2Cr2O3 + 3O2
  • (NH4)2Cr2O7 = N2 + Cr2O3 + 4H2O
  • Разлагаются некоторые основания:

Ca(OH)2 = CaO + H2O

3. Составление уравнений реакций по схеме —  примеры реакций замещения

  • реакция замещения водорода в кислотах:

 когда нам дана реакция замещения металлом водорода в кислотах, нужно учитывать электрохимический ряд напряжений металлов: металлы, находящиеся в ряду ДО водорода, вытесняют его из кислот:

2Na + 2HCl = 2NaCl + H2

  • реакции замещения в солях:

Ca + 2NaCl = CaCl2 +2 Na

Правило:  предыдущий металл вытесняет последующий из его солей

(т.е. реакция Na + CaCl2 не будет идти)
 

4. Составление уравнений реакций по схеме — реакции обмена веществ

Здесь следующие правила — обменные реакции идут в сторону образования продуктов при:

  1. выпадении осадка: NaCl + AgNO3 = AgCl↓ + NaNO3
  2. выделении газа: Na2CO3 + HCl = NaCl + CO2 + H2O ;
  3. образовании малодиссоциирующего вещества (H2O, NH4OH, органические кислоты и соли и т.д.):  NaOH +  H2SO3 =  Na2SO3 + H2O
  1. Взаимосвязь неорганических веществ можно отобразить такой таблицей:
  2. Как решать уравнения реакции
  3. Теория, это, конечно, хорошо, но давайте попрактикуемся — попробуем составить уравнения реакций по схемам превращений
  4. Как решать уравнения реакции
  5.  
    В первой реакции к меди можно прибавить либо AgNO3, либо HNO3 —  в ряду напряжений медь стоит до серебра, а азотная кислота будет давать окислительно-восстановительную реакцию.
     

Во второй части схемы нам подходит K2S или H2S, т.к. сульфид меди — осадок.

 

  • Ответ: 1)
  • Как решать уравнения реакции
  • Составим уравнения реакций для данной схемы превращений:
     
    Первая реакция — переход фосфора в фосфорную кислоту — такое под силу только мощным окислителям — либо серной, либо азотной кислоте.
     

 

Вторая реакция — обменная — K2SO4 даст растворимые продукты, а вот KOH — в самый раз! Получится вода — малодиссоциирующее вещество.

 

Ответ: 4)

 
 
 

Обсуждение: “Составить уравнения реакций по схеме превращений”

(Правила комментирования)

Источник: https://distant-lessons.ru/sostavit-uravneniya-reakcij-po-sxeme-prevrashhenij.html

Урок 13. Составление химических уравнений – HIMI4KA

Архив уроков › Основные законы химии

В уроке 13 «Составление химических уравнений» из курса «Химия для чайников» рассмотрим для чего нужны химические уравнения; научимся уравнивать химические реакции, путем правильной расстановки коэффициентов. Данный урок потребует от вас знания химических основ из прошлых уроков. Обязательно прочитайте об элементном анализе, где подробно рассмотрены эмпирические формулы и анализ химических веществ.

Как решать уравнения реакции

Химическое уравнение

В результате реакции горения метана CH4 в кислороде O2 образуются диоксид углерода CO2 и вода H2O. Эта реакция может быть описана химическим уравнением:

Попробуем извлечь из химического уравнения больше сведений, чем просто указание продуктов и реагентов реакции.

Химичекое уравнение (1) является НЕполным и потому не дает никаких сведений о том, сколько молекул O2 расходуется в расчете на 1 молекулу CH4 и сколько молекул CO2 и H2O получается в результате.

Но если записать перед соответствующими молекулярными формулами численные коэффициенты, которые укажут сколько молекул каждого сорта принимает участие в реакции, то мы получим полное химическое уравнение реакции.

Для того, чтобы завершить составление химического уравнения (1), нужно помнить одно простое правило: в левой и правой частях уравнения должно присутствовать одинаковое число атомов каждого сорта, поскольку в ходе химической реакции не возникает новых атомов и не происходит уничтожение имевшихся. Данное правило основывается на законе сохранения массы, который мы рассмотрели в начале главы.

Уравнивание химических реакций

Уравнивание химических реакций нужно для того, чтобы из простого химического уравнения получить полное.

Итак, перейдем к непосредственному уравниванию реакции (1): еще раз взгляните на химическое уравнение, в точности на атомы и молекулы в правой и левой части.

Нетрудно заметить, что в реакции участвуют атомы трех сортов: углерод C, водород H и кислород O. Давайте подсчитаем и сравним количество атомов каждого сорта в правой и левой части химического уравнения.

Как решать уравнения реакции

Начнем с углерода. В левой части один атом С входит в состав молекулы CH4, а в правой части один атом С входит в состав CO2. Таким образом в левой и в правой части количество атомов углерода совпадает, поэтому его мы оставляем в покое. Но для наглядности поставим коэффициент 1 перед молекулами с углеродом, хоть это и не обязательно:

  • 1CH4 + O2 → 1CO2 + H2O (2)

Затем переходим к подсчету атомов водорода H.

В левой части присутствуют 4 атома H (в количественном смысле H4 = 4H) в составе молекулы CH4, а в правой – всего 2 атома H в составе молекулы H2O, что в два раза меньше чем в левой части химического уравнения (2). Будем уравнивать! Для этого поставим коэффициент 2 перед молекулой H2O. Вот теперь у нас и в реагентах и в продуктах будет по 4 молекулы водорода H:

  • 1CH4 + O2 → 1CO2 + 2H2O (3)

Обратите свое внимание, что коэффициент 2, который мы записали перед молекулой воды H2O для уравнивания водорода H, увеличивает в 2 раза все атомы, входящие в ее состав, т.е 2H2O означает 4H и 2O.

Ладно, с этим вроде бы разобрались, осталось подсчитать и сравнить количество атомов кислорода O в химическом уравнении (3). Сразу бросается в глаза, что в левой части атомов O ровно в 2 раза меньше чем в правой.

Теперь-то вы уже и сами умеете уравнивать химические уравнения, поэтому сразу запишу финальный результат:

  • 1CH4 + 2O2 → 1CO2 + 2H2O или СH4 + 2O2 → CO2 + 2H2O (4)

Как видите, уравнивание химических реакций не такая уж и мудреная штука, и важна здесь не химия, а математика. Уравнение (4) называется полным уравнением химической реакции, потому что в нем соблюдается закон сохранения массы, т.е.

число атомов каждого сорта, вступающих в реакцию, точно совпадает с числом атомов данного сорта по завершении реакции. В каждой части этого полного химического уравнения содержится по 1 атому углерода, по 4 атома водорода и по 4 атома кислорода.

Однако стоит понимать пару важных моментов: химическая реакция — это сложная последовательность отдельных промежуточных стадий, и потому нельзя к примеру истолковывать уравнение (4) в том смысле, что 1 молекула метана должна одновременно столкнуться с 2 молекулами кислорода.

Процессы происходящие при образовании продуктов реакции гораздо сложнее. Второй момент: полное уравнение реакции ничего не говорит нам о ее молекулярном механизме, т.е о последовательности событий, которые происходят на молекулярном уровне при ее протекании.

Коэффициенты в уравнениях химических реакций

Еще один наглядный пример того, как правильно расставить коэффициенты в уравнениях химических реакций: Тринитротолуол (ТНТ) C7H5N3O6 энергично соединяется с кислородом, образуя H2O, CO2 и N2. Запишем уравнение реакции, которое будем уравнивать:

  • C7H5N3O6 + O2 → CO2 + H2O + N2 (5)

Проще составлять полное уравнение, исходя из двух молекул ТНТ, так как в левой части содержится нечетное число атомов водорода и азота, а в правой — четное:

  • 2C7H5N3O6 + O2 → CO2 + H2O + N2 (6)

Тогда ясно, что 14 атомов углерода, 10 атомов водорода и 6 атомов азота должны превратиться в 14 молекул диоксида углерода, 5 молекул воды и 3 молекулы азота:

  • 2C7H5N3O6 + O2 → 14CO2 + 5H2O + 3N2 (7)

Теперь в обеих частях содержится одинаковое число всех атомов, кроме кислорода. Из 33 атомов кислорода, имеющихся в правой части уравнения, 12 поставляются двумя исходными молекулами ТНТ, а остальные 21 должны быть поставлены 10,5 молекулами O2. Таким образом полное химическое уравнение будет иметь вид:

  • 2C7H5N3O6 + 10,5O2 → 14CO2 + 5H2O + 3N2 (8)

Можно умножить обе части на 2 и избавиться от нецелочисленного коэффициента 10,5:

  • 4C7H5N3O6 + 21O2 → 28CO2 + 10H2O + 6N2 (9)

Но этого можно и не делать, поскольку все коэффициенты уравнения не обязательно должны быть целочисленными. Правильнее даже составить уравнение, исходя из одной молекулы ТНТ:

  • C7H5N3O6 + 5,25O2 → 7CO2 + 2,5H2O + 1,5N2 (10)

Полное химическое уравнение (9) несет в себе много информации. Прежде всего оно указывает исходные вещества — реагенты, а также продукты реакции.

Кроме того, оно показывает, что в ходе реакции индивидуально сохраняются все атомы каждого сорта.

 Если умножить обе части уравнения (9) на число Авогадро NA=6,022·1023, мы сможем утверждать, что 4 моля ТНТ реагируют с 21 молями O2 с образованием 28 молей CO2, 10 молей H2O и 6 молей N2.

Есть еще одна фишка. При помощи таблицы Менделеева определяем молекулярные массы всех этих веществ:

  • C7H5N3O6 = 227,13 г/моль
  • O2 = 31,999 г/моль
  • CO2 = 44,010 г/моль
  • H2O = 18,015 г/моль
  • N2 = 28,013 г/моль

Теперь уравнение 9 укажет еще, что 4·227,13 г = 908,52 г ТНТ требуют для осуществления полной реакции 21·31,999 г = 671,98 г кислорода и в результате образуется 28·44,010 г = 1232,3 г CO2, 10·18,015 г = 180,15 г H2O и 6·28,013 г = 168,08 г N2. Проверим, выполняется ли в этой реакции закон сохранения массы:

Реагенты Продукты
908,52 г ТНТ 1232,3 г CO2
671,98 г CO2 180,15 г H2O
168,08 г N2
Итого 1580,5 г 1580,5 г

Но необязательно в химической реакции должны участвовать индивидуальные молекулы. Например, реакция известняка CaCO3 и соляной кислоты HCl, с образованием водного раствора хлорида кальция CaCl2 и диоксида углерода CO2:

  • CaCO3 + 2HCl → CaCl2 + CO2 + H2O (11)

Химическое уравнение (11) описывает реакцию карбоната кальция CaCO3 (известняка) и хлористоводородной кислоты HCl с образованием водного раствора хлорида кальция CaCl2 и диоксида углерода CO2. Это уравнение полное, так как число атомов каждого сорта в его левой и правой частях одинаково.

Смысл этого уравнения на макроскопическом (молярном) уровне таков: 1 моль или 100,09 г CaCO3 требует для осуществления полной реакции 2 моля или 72,92 г HCl, в результате чего получается по 1 молю CaCl2 (110,99 г/моль), CO2 (44,01 г/моль) и H2O (18,02 г/моль). По этим численным данным нетрудно убедиться, что в данной реакции выполняется закон сохранения массы.

Интерпретация уравнения (11) на микроскопическом (молекулярном) уровне не столь очевидна, поскольку карбонат кальция представляет собой соль, а не молекулярное соединение, а потому нельзя понимать химическое уравнение (11) в том смысле, что 1 молекула карбоната кальция CaCO3 реагирует с 2 молекулами HCl. Тем более молекула HCl в растворе вообще диссоциирует (распадается) на ионы H+ и Cl—. Таким образом более правильным описанием того, что происходит в этой реакции на молекулярном уровне, дает уравнение:

  • CaCO3(тв.) + 2H+(водн.) → Ca2+(водн.) + CO2(г.) + H2O(ж.) (12)
Читайте также:  Как определить восток

Здесь в скобках сокращенно указано физическое состояние каждого сорта частиц (тв. — твердое, водн. — гидратированный ион в водном растворе, г. — газ, ж. — жидкость).

Уравнение (12) показывает, что твердый CaCO3 реагирует с двумя гидратированными ионами H+, образуя при этом положительный ион Ca2+, CO2 и H2O. Уравнение (12) как и другие полные химические уравнения не дает представления о молекулярном механизме реакции и менее удобно для подсчета количества веществ, однако, оно дает лучшее описание происходящего на микроскопическом уровне.

Закрепите полученные знания о составлении химических уравнений, самостоятельно разобрав пример с решением:

Надеюсь из урока 13 «Составление химических уравнений» вы узнали для себя что-то новое. Если у вас возникли вопросы, пишите их в комментарии.

Источник: https://himi4ka.ru/arhiv-urokov/urok-13-sostavlenie-himicheskih-uravnenij.html

Как составлять ионные уравнения. Задача 31 на ЕГЭ по химии

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации – вещества распадаются на ионы.

Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H+, точнее, H3O+) и анионы хлора (Cl-).

Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na+ и Br- (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая “обычные” (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H2O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H+ и Cl-. Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H+ + Cl- + Na+ + OH- = Na+ + Cl- + H2O. (2)

Это и есть полное ионное уравнение. Вместо “виртуальных” молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H2O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы – катионы Na+ и анионы Cl-. В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H+ + OH- = H2O. (3)

Как видите, все сводится к взаимодействию ионов H+ и OH- c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку – 2 балла.

Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H2O – молекулярное уравнение (“обычное” уравнения, схематично отражающее суть реакции);
  • H+ + Cl- + Na+ + OH- = Na+ + Cl- + H2O – полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H+ + OH- = H2O – краткое ионное уравнение (мы убрали весь “мусор” – частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем “в виде молекул”.
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т.

    е. частицы, которые не участвуют в процессе.

  4. Проверяем коэффициенты и получаем окончательный ответ – краткое ионное уравнение.

Пример 1. Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение. Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия – это две соли. Заглянем в раздел справочника “Свойства неорганических соединений”. Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

BaCl2 + Na2SO4 = BaSO4↓ + 2NaCl.

Таблица растворимости подсказывает нам, что BaSO4 действительно не растворяется в воде (направленная вниз стрелка, напомню, символизирует, что данное вещество выпадает в осадок).

Молекулярное уравнение готово, переходим к составлению полного ионного уравнения.

Обе соли, присутствующие в левой части, записываем в ионной форме, а вот в правой части оставляем BaSO4 в “молекулярной форме” (о причинах этого – чуть позже!) Получаем следующее:

Ba2+ + 2Cl- + 2Na+ + SO42- = BaSO4↓ + 2Cl- + 2Na+.

Осталось избавиться от балласта: убираем ионы-наблюдатели. В данном случае в процессе не участвуют катионы Na+ и анионы Cl-. Стираем их и получаем краткое ионное уравнение:

Ba2+ + SO42- = BaSO4↓.

А теперь поговорим подробнее о каждом шаге нашего алгоритма и разберем еще несколько примеров.

Как составить молекулярное уравнение реакции

Должен сразу вас разочаровать. В этом пункте не будет однозначных рецептов. Действительно, вряд ли можно рассчитывать, что я смогу разобрать здесь ВСЕ возможные уравнения реакций, которые могут встретиться вам на ЕГЭ или ОГЭ по химии.

Ваш помощник – раздел “Свойства неорганических соединений”. Если вы хорошо знакомы с четырьмя базовыми классами неорганических веществ (оксиды, основания, кислоты, соли), если вам известны химические свойства этих классов и методы их получения, можете на 95% быть уверены в том, что у вас не будет проблем на экзамене с написанием молекулярных уравнений.

Оставшиеся 5% – это некоторые “специфические” реакции, которые мы не сможем перечислить. Не будем лить слез по поводу этих 5%, а вспомним лучше номенклатуру и химические свойства базовых классов неорганических веществ. Три задания для самостоятельной работы:

Упражнение 1. Напишите молекулярные формулы следующих веществ: оксид фосфора (V), нитрат цезия, сульфат хрома (III), бромоводородная кислота, карбонат аммония, гидроксид свинца (II), фосфат стронция, кремниевая кислота. Если при выполнении задания у вас возникнут проблемы, обратитесь к разделу справочника “Названия кислот и солей”.

Упражнение 2. Дополните уравнения следующих реакций:

  1. KOH + H2SO4 =
  2. H3PO4 + Na2O=
  3. Ba(OH)2 + CO2=
  4. NaOH + CuBr2=
  5. K2S + Hg(NO3)2=
  6. Zn + FeCl2=

Упражнение 3. Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме “Химические свойства основных классов неорганических соединений”.

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие – оставить в “молекулярной форме”. Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH4OH);
  • сильные кислоты (H2SO4, HNO3, HCl, HBr, HI, HClO4, HClO3, H2SeO4, …).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли.

Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин “все остальные вещества”, и которые, следуя примеру героя известного фильма, требуют “огласить полный список” даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH4OH и сходные с ним вещества);
  • все слабые кислоты (H2СO3, HNO2, H2S, H2SiO3, HCN, HClO, практически все органические кислоты …);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H2, CO2, SO2, H2S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение – растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.

Давайте тренироваться!

Пример 2. Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение. Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) – нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH)2 + 2HCl = CuCl2 + 2H2O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие – в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) – нерастворимое основание (см. таблицу растворимости), слабый электролит.

Нерастворимые основания записывают в молекулярной форме. HCl – сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl2 – растворимая соль. Записываем в ионной форме.

Вода – только в виде молекул! Получаем полное ионное уравнение:

Сu(OH)2 + 2H+ + 2Cl- = Cu2++ 2Cl- + 2H2O.

Пример 3. Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение. Диоксид углерода – типичный кислотный оксид, NaOH – щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO2 + 2NaOH = Na2CO3 + H2O.

CO2 – оксид, газообразное соединение; сохраняем молекулярную форму. NaOH – сильное основание (щелочь); записываем в виде ионов. Na2CO3 – растворимая соль; пишем в виде ионов. Вода – слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO2 + 2Na+ + 2OH- = Na2++ CO32- + H2O.

Пример 4. Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение. Сульфид натрия и хлорид цинка – это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

  • Na2S + ZnCl2 = ZnS↓ + 2NaCl.
  • Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:
  • 2Na+ + S2- + Zn2+ + 2Cl- = ZnS↓ + 2Na+ + 2Cl-.
  • Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.
  • Упражнение 4. Составьте молекулярные и полные ионные уравнения следующих реакций:
  1. NaOH + HNO3 =
  2. H2SO4 + MgO =
  3. Ca(NO3)2 + Na3PO4 =
  4. CoBr2 + Ca(OH)2 =

Упражнение 5. Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

В следующей части статьи мы научимся составлять краткие ионные уравнения и разберем большое количество примеров. Кроме того, мы обсудим специфические особенности задания 31, которое вам предстоит решать на ЕГЭ по химии.

Продолжение статьи →

Источник: http://www.repetitor2000.ru/ionnye_uravnenija_01.html

Составление уравнений реакций ионного обмена. Видеоурок. Химия 9 Класс

Данный урок продолжает тему «Реакции ионного обмена». Урок поможет закрепить умение составлять уравнения реакций ионного обмена в молекулярной и ионной формах, научит составлять по сокращенному ионному уравнению молекулярные.

  • Тема: Химическая связь. Электролитическая диссоциация
  • Урок: Составление уравнений реакций ионного обмена
  • Составим уравнение реакции между гидроксидом железа (III) и азотной кислотой.
  • Fe(OH)3 + 3HNO3 = Fe(NO3)3 + 3H2O
  • Запишем данное уравнение в ионной форме:

(Гидроксид железа (III) является нерастворимым снованием, поэтому не подвергается электролитической диссоциации. Вода – малодиссоциируемое вещество, на ионы в растворе практически недиссоциировано.)

  1. Fe(OH)3 + 3H+ + 3NO3- = Fe3+ + 3NO3- + 3H2O
  2. Зачеркнем одинаковое количество нитрат-анионов слева и справа, запишем сокращенное ионное уравнение:
  3. Fe(OH)3 + 3H+  = Fe3+ + 3H2O

Данная реакция протекает  до конца, т.к. образуется малодиссоциируемое вещество – вода.

  • Составим уравнение реакции между карбонатом натрия и нитратом магния.
  • Na2CO3 + Mg(NO3)2 = 2NaNO3 + MgCO3↓
  • Запишем данное уравнение в ионной форме:
  • (Карбонат магния является нерастворимым в воде веществом, следовательно, на ионы не распадается.)
  • 2Na+ + CO32-+ Mg2+ + 2NO3- = 2Na+ + 2NO3- + MgCO3↓
  • Зачеркнем одинаковое количество нитрат-анионов и катионов натрия слева и справа, запишем сокращенное ионное уравнение:
  • CO32-+ Mg2+ = MgCO3↓

Данная реакция протекает  до конца, т.к. образуется осадок – карбонат магния.

  1. Составим уравнение реакции между карбонатом натрия и азотной кислотой.
  2. Na2CO3 + 2HNO3 = 2NaNO3 + CO2 ↑+ H2O
  3. (Углекислый газ и вода – продукты разложения образующейся слабой угольной кислоты.)
  4. 2Na+ + CO32- + 2H+ + 2NO3- = 2Na+ + 2NO3-+ CO2↑ + H2O
  5. CO32- + 2H+ = CO2↑ + H2O

Данная реакция протекает до конца, т.к. в результате нее выделяется газ и образуется вода.

Составим два молекулярных уравнения реакций, которым соответствует следующее сокращенное ионное уравнение: Ca2+ + CO32- = CaCO3.

Сокращенное ионное уравнение показывает сущность реакции ионного обмена. В данном случае можно сказать, что для получения карбоната кальция необходимо, чтобы в состав первого вещества входили катионы кальция, а в состав второго – карбонат-анионы. Составим молекулярные уравнения реакций, удовлетворяющих этому условию:

  • CaCl2 + K2CO3 = CaCO3↓ + 2KCl
  • Ca(NO3)2 + Na2CO3 = CaCO3↓ + 2NaNO3
  • Список рекомендованной литературы

1.      Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. – М.: АСТ: Астрель, 2007. (§17)

2.      Оржековский П.А. Химия: 9-ый класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.: Астрель, 2013. (§9)

3.      Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009.

4.      Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. – М.: РИА «Новая волна»: Издатель Умеренков, 2008.

5.      Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1.      Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме): (Источник).

2.      Электронная версия журнала «Химия и жизнь»: (Источник).

Домашнее задание

1. Отметьте в таблице знаком «плюс» пары веществ, между которыми возможны реакции ионного обмена, идущие до конца. Составьте уравнения реакций в молекулярном, полном и сокращенном ионном виде.

Реагирующие вещества K2CO3 KOH AgNO3 FeCl3 HNO3
NaOH
CuCl2
HCl

2. с. 67  №№ 10,13из учебника П.А. Оржековского «Химия: 9-ый класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.: Астрель, 2013.

Источник: https://interneturok.ru/lesson/chemistry/9-klass/bhimicheskaya-svyaz-elektroliticheskaya-dissociaciyab/sostavlenie-uravneniy-reaktsiy-ionnogo-obmena

Химические уравнения

На основании закона сохранения массы веществ составляют уравнения химических реакций. Химическое уравнение – условная запись химической реакции с помощью химических формул и знаков.

В левой части уравнения записывают формулы или формулу веществ, которые вступили в химическую реакцию.

Их называют исходными веществами, между ними знак «плюс», в правой части уравнения записывают формулы или формулу продуктов реакции, т.е.

веществ, которые образуются в результате реакции, между ними тоже ставят знак «плюс», а между левой и правой частью уравнения ставят стрелку.

Химическую реакцию можно изобразить молекулярным уравнением. Т.е. молекулярное уравнение – это уравнение, в котором исходные вещества и продукты реакции записаны в виде молекул. Если в результате реакции образуется осадок, то возле него справа ставят стрелку, направленную вниз (↓), а если выделяется газ, то возле него справа ставят стрелку, направленную вверх (↑).

После записи схемы уравнения находят коэффициенты, т.е. цифры, стоящие перед формулами веществ, чтобы число атомов до и после реакции было одинаковым.

Например, запишем уравнение реакции водорода с кислородом. Вначале укажем формулы веществ, вступивших в химическую реакцию – это водород (Н2) и кислород (О2), между ними ставим знак «плюс», в результате реакции образуется вода – Н2О.

Между веществами левой и правой части ставим стрелку. Посмотрим, сколько атомов водорода в левой и правой части. Получается два атома водорода до и после реакции, а кислорода до реакции 2 атома, после реакции – один атом.

Поэтому в правой части уравнения перед формулой воды ставим коэффициент 2. Но теперь в правой части уравнения стало 4 атома водорода, а в левой только 2. Чтобы уровнять число атомов водорода, необходимо в левой части уравнения перед водородом поставить коэффициент 2. Т.к.

мы уровняли число всех атомов в левой и правой части уравнения, то теперь ставим не стрелку, а знак равенства.

Для правильного подбора коэффициентов в уравнении реакции следует выполнять некоторые условия:

·                   Перед формулой простого вещества можно записывать дробный коэффициент. Например, в реакции горения бутана:

С4Н10 + О2 → СО2 + Н2О. Перед формулой СО2 ставим коэффициент 4, т.к. в реакцию вступает 4 атома углерода, перед формулой воды ставим коэффициент 5, т.к. в реакцию вступает 10 атомов водорода.

В результате реакции образуется 13 атомов кислорода, а до реакции 2 атома, значит перед формулой кислорода необходимо поставить коэффициент 6,5. А так как, коэффициент показывает не только число атомов, но и молекул, то следует удвоить коэффициент в уравнении.

Получается, уравнение будет иметь вид: 2С4Н10 + 13О2 → 8СО2 + 10Н2О.

·                   Если в схеме реакции есть соль, то сначала уравнивают число ионов, образующих соль. Например, в результате реакции фосфорной кислоты и гидроксида кальция образуется соль – фосфат кальция и вода.

Н3РО4 + Са(ОН)2 → Са3(РО4)2 + Н2О. Эта соль состоит из фосфат-ионов с зарядом 3- и ионов кальция с зарядом 2+. Уравняем их число, записав перед формулой фосфорной кислоты коэффициент 2, а перед формулой гидроксида кальция – коэффициент 3.

·                   Если в схеме реакции есть атомы водорода и кислорода, то сначала уравниваются атомы водорода, а только потом кислорода.

Из предыдущей схемы видно, что в левой части уравнения 12 атомов водорода, в правой – только 2, значит, перед формулой воды необходимо поставить коэффициент 6. Подсчитаем число атомов кислорода.

До реакции их 14, после реакции тоже 14. Поэтому можно вместо стрелки поставить знак равенства.

·                   Если в схеме реакции имеется несколько формул солей, то начинать уравнивание следует с ионов, входящих в состав соли, содержащей большее их число. Например, в реакции нитрата бария и сульфата алюминия образуется две соли – сульфат бария и нитрат алюминия.

Наибольшее число ионов содержит соль – нитрат алюминия, поэтому сначала нужно уравнять ионы, которыми образована эта соль, т.е. ионы алюминия и нитрат-ионы. Ba(NO3)2 + Al2(SO4)3 → BaSO4 + Al(NO3)3. У алюминия заряд 3+, у нитрат-ионов  – 1-. Поэтому в левой части уравнения перед формулой Ba(NO3)2 ставим коэффициент 3.

Перед формулой Al2(SO4)3 нужно поставить коэффициент 1, но он не ставится. Уравниваем остальные ионы. Ионов бария до реакции 3, после реакции 1, поэтому перед формулой BaSO4 ставим коэффициент 3, нитрат-ионов до реакции 6, поэтому в правой части уравнения перед Al(NO3)3 ставим коэффициент 2.

Число атомов алюминия до и после реакции одинаково, т.е. 2. Ионов бария и сульфат-ионов до реакции и после реакции одинаково – по 3.

·                   Если число атомов какого-то элемента в одной части схемы уравнения четное, а в другой нечетное, то необходимо перед формулой с нечетным числом атомов поставить коэффициент 2, а затем уровнять число всех атомов. Например, расставим коэффициенты в реакции алюминия с кислородом. Al + O2 → Al2O3.

В результате реакции образуется оксид алюминия – Al2O3. Число атомов кислорода до реакции четное, т.е. равно двум, а после реакции нечетное – 3. Поэтому перед формулой оксида алюминия ставим коэффициент 2.

В результате у нас стало 6 атомов кислорода после реакции, значит, в левой части уравнения перед формулой кислорода ставим коэффициент 3. Начинаем уравнивать число атомов алюминия до и после реакции. До реакции 1 атом, после реакции – 4. Следовательно, в левой части уравнения перед формулой алюминия ставим коэффициент 4.

Теперь число атомов каждого химического элемента в левой и правой части схемы уравнения одинаково, и стрелку следует заменить знаком равенства.

Источник: https://videouroki.net/video/27-khimichieskiie-uravnieniia.html

Как уравнивать химические уравнения?

Для того, чтобы научится уравнивать химические уравнения, сначала нужно выделять главные моменты и использовать правильный алгоритм.

Ключевые моменты

Выстроить логику процесса несложно. Для этого выделим следующие этапы:

  1. Определение типа реагентов (все реагенты органические, все реагенты неорганические, органические и неорганические реагенты в одной реакции)
  2. Определение типа химической реакции (реакция с изменением степеней окисления компонентов или нет)
  3. Выделение проверочного атома или группы атомов

Примеры

  1. Все компоненты неорганические, без изменения степени окисления, проверочным атомом будет кислород – О (его не затронули никакие взаимодействия:
  • NaОН + НCl = NaCl + H2O
  • Посчитаем количество атомов каждого элементов правой и левой части и убедимся, что здесь не требуется расстановка коэффициентов (по умолчанию отсутствие коэффициента – это коэффициент равный 1)
  • NaOH + H2SO4 = Na2SO4 + H2O
  • В данном случае, в правой части уравнения мы видим 2 атома натрия, значит в левой части уравнения нам нужно подставить коэффициент 2 перед соединением, содержащим натрий:
  • 2NaOH + H2SO4 = Na2SO4 + H2O
  • Проверяем по кислороду – О: в левой части 2О  из NaОН и 4 из сульфат иона SO4, а в правой 4 из SO4 и 1 в воде. Добавляем 2 перед водой:
  • 2NaOH + H2SO4 = Na2SO4 +2H2O
  1. Все компоненты органические, без изменения степени окисления:
  1. НООС-СOOH + CH3OH = CH3OOC-COOCH3 + H2O (реакция возможна при определенных условиях)
  2. В данном случае мы видим, что в правой части 2 группы атомов CH3, а в левой только одна. Добавляем в левую часть коэффициент 2 перед CH3OH, проверяем по кислороду и добавляем 2 перед водой
  3. НООС-СOOH + 2CH3OH = CH3OOC-COOCH3 + 2H2O
  1. Органический и неорганические компоненты без изменения степеней окисления:

CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

В данной реакции проверочный атом необязателен. В левой части 1 молекула метиламина CH3NH2, а в правой 2. Значит нужен коэффициент 2 перед метиламином.

2CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

  1. Органический компонент, неорганический, изменение степени окисления.
  • СuO + C2H5OH = Cu + CH3COOH + Н2O
  • В данном случае необходимо составить электронный баланс, а формулы органических веществ лучше преобразовать в брутто. Проверочным атомом будет кислород – по его количеству видно, что коэффициенты не требуются, электронный баланс подтверждает
  • CuO + C2H6O = Cu + C2H4O2
  • Cu+2 +2e = Cu0
  • 2С +2 – 2е = 2С0
  • C3H8 + O2 = CO2 + H2O

Здесь O не может быть проверочным, так как сам меняет степень окисления. Проверяем по Н.

  1. О2 0 + 2*2 е = 2O-2 (речь идет о кислороде из CO2)
  2. 3С (-8/3 ) – 20е = 3С +4 (в органических окислительно-восстановительных реакциях используют условные дробные степени окисления)
  3. Из электронного баланса видно, что для окисления углерода требуется в 5 раз больше кислорода. Ставим 5 перед O2, также из электронного баланса м должны поставить 3 перед С из СО2, проверим по Н, и поставим 4 перед водой
  4. C3H8 + 5O2 = 3CO2 + 4H2O
  1. Неорганические соединения, изменение степеней окисления.
  • Na2SO3 + KMnO4 + H2SO4 = Na2SO4 + K2SO4 + Н2О + MnO2
  • Проверочными будут водороды в воде и кислотные остатки SO4 2- из серной кислоты.
  • S+4 (из SO3 2-) – 2e = S +6(из Na2SO4)
  • Mn+7 + 3e = Mn+4
  • Таким образом нужно поставить 3 перед Na2SO3 и Na2SO4, 2 перед КМnO4 и MNO2.
  • 3Na2SO3 + 2KMnO4 + H2SO4 = 3Na2SO4 + K2SO4 + Н2О +2MnO2

Источник: http://VashUrok.ru/questions/kak-uravnivat-himicheskie-uravneniya

Как составляются уравнения химических реакций?

Для описания протекающих химических реакций составляются уравнения химических реакций.

В них слева от знака равенства (или стрелки →) записываются формулы реагентов (веществ, вступающих в реакцию), а справа — продукты реакции (вещества, которые получились после химической реакции).

Поскольку говорится об уравнении, то количество атомов в левой части уравнения должно быть равным тому, что есть в правом. Поэтому после составления схемы химической реакции (записи реагентов и продуктов) производят подстановку коэффициентов, чтобы уравнять количество атомов.

Коэффициенты представляют собой числа перед формулами веществ, указывающие на число молекул, которые вступают в реакцию.

Например, пусть в химической реакции газ водород (H2) реагирует с газом кислородом (O2). В результате образуется вода (H2O). Схема реакции будет выглядеть так:

  • H2 + O2 → H2O
  • Слева находится по два атома водорода и кислорода, а справа два атома водорода и только один кислорода. Предположим, что в результате реакции на одну молекулу водорода и одну кислорода образуется две молекулы воды:
  • H2 + O2 → 2H2O

Теперь количество атомов кислорода до и после реакции уравнено. Однако водорода до реакции в два раза меньше, чем после. Следует сделать вывод, что для образования двух молекул воды надо две молекулы водорода и одну кислорода. Тогда получится такая схема реакции:

2H2 + O2 → 2H2O

Здесь количество атомов разных химических элементов одинаково до и после реакции. Значит, это уже не просто схема реакции, а уравнение реакции. В уравнениях реакций часто стрелку заменяют на знак равенства, чтобы подчеркнуть что, число атомов разных химических элементов уравнено:

  1. 2H2 + O2 = 2H2O
  2. Рассмотрим такую реакцию:
  3. NaOH + H3PO4 → Na3PO4 + H2O
  4. После реакции образовался фосфат, в который входит три атома натрия. Уравняем количество натрия до реакции:
  5. 3NaOH + H3PO4 → Na3PO4 + H2O

Количество водорода до реакции шесть атомов (три в гидроксиде натрия и три в фосфорной кислоте). После реакции — только два атома водорода. Разделив шесть на два, получим три. Значит, перед водой надо поставить число три:

3NaOH + H3PO4 → Na3PO4 + 3H2O

Количество атомов кислорода до реакции и после совпадает, значит дальнейший расчет коэффициентов можно не делать.

Copyright © 2019. All Rights Reserved

Источник: https://scienceland.info/chemistry8/chemical-equation

Тест-тренажер подбора коэффициентов в уравнении химической реакции

Page 2

Неорганическая химия. Самоконтроль знаний по теме “Соли”. В тесте 11 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Кислоты”. В тесте 11 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Оксиды”. 8 класс. 12 тестовых заданий с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Основания”. В тесте 12 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Оксиды”. В тесте 14 вопросов с выбором одного правильного ответа.

Page 3

Неорганическая химия. Самоконтроль знаний по теме “Железо”. В тесте 10 вопросов с выбором одного правильного ответа.
Самоконтроль знаний по теме “Металлы”. В тесте 15 вопросов с выбором одного правильного ответа.

Page 4

Органическая химия. Самоконтроль знаний по теме “Аминокислоты. Белки”. В тесте 20 вопросов с выбором одного правильного ответа.

Page 5

Неорганическая химия. Самоконтроль знаний по теме “Железо”. В тесте 10 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Соли”. В тесте 11 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Кислоты”. В тесте 11 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Оксиды”. 8 класс. 12 тестовых заданий с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Основания”. В тесте 12 вопросов с выбором одного правильного ответа.
Самоконтроль знаний по теме “Металлы”. В тесте 15 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Оксиды”. В тесте 14 вопросов с выбором одного правильного ответа.

Page 6

Органическая химия. Самоконтроль знаний по теме “Аминокислоты. Белки”. В тесте 20 вопросов с выбором одного правильного ответа.
Подробная инструкция по созданию интерактивного теста в среде MS PowerPoint с использованием Visual Basic for Application. Для удобства в использовании теста в него добавлены функции учета количества вопросов, количества верно выполненных заданий, процента выполнения заданий и выставления оценки. Ресурс содержит пример, на основе которого можно быстро освоить и создать свои тесты, которые освободят массу Вашего времени на подсчет результатов, выставят оценку – ведь, создавая тест, Вы уже его проверяете.

Page 7

Неорганическая химия. Самоконтроль знаний по теме “Железо”. В тесте 10 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Соли”. В тесте 11 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Кислоты”. В тесте 11 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Оксиды”. 8 класс. 12 тестовых заданий с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Основания”. В тесте 12 вопросов с выбором одного правильного ответа.
Самоконтроль знаний по теме “Металлы”. В тесте 15 вопросов с выбором одного правильного ответа.
Неорганическая химия. Самоконтроль знаний по теме “Оксиды”. В тесте 14 вопросов с выбором одного правильного ответа.

Источник: http://mirhim.ucoz.ru/publ/testy/8_klass/u/41-1-0-177

Как решать уравнения реакций по химии 8 класс видеоурок | Помощь школьнику

Два равнобедренных треугольника имеют равные углы, противолежащие основаниям. Основание и боковая сторона первого треугольника равны 16 см и 10 см. Найдите все стороны второго треугольника, если его периметр равен 18 см. Попроси больше объяснений; Следить ? Отметить нарушение.

Химические уравнения

Урок 27. Химия 8 класс

Конспект урока «Химические уравнения»

На основании закона сохранения массы веществ составляют уравнения химических реакций. Химическое уравнение – условная запись химической реакции с помощью химических формул и знаков.

В левой части уравнения записывают формулы или формулу веществ, которые вступили в химическую реакцию.

Их называют Исходными веществами, между ними знак «плюс», В правой части уравнения записывают формулы или формулу Продуктов реакции, т. е.

веществ, которые образуются в результате реакции, между ними тоже ставят знак «плюс», а между левой и правой частью уравнения ставят стрелку.

Химическую реакцию можно изобразить молекулярным уравнением. Т. е. Молекулярное уравнение – это уравнение, в котором исходные вещества и продукты реакции записаны в виде молекул. Если в результате реакции образуется осадок, то возле него справа ставят стрелку, направленную вниз (↓), а Если выделяется газ, то возле него справа ставят стрелку, направленную вверх (↑).

После записи схемы уравнения находят Коэффициенты, т. е. цифры, стоящие перед формулами веществ, чтобы число атомов до и после реакции было одинаковым.

Например, запишем Уравнение реакции водорода с кислородом. Вначале укажем формулы веществ, вступивших в химическую реакцию – это водород (Н2) и кислород (О2), между ними ставим знак «плюс», в результате реакции образуется вода – Н2О.

Между веществами левой и правой части ставим стрелку. Посмотрим, сколько атомов водорода в левой и правой части. Получается два атома водорода до и после реакции, а кислорода до реакции 2 атома, после реакции – один атом.

Поэтому в правой части уравнения перед формулой воды ставим коэффициент 2. Но теперь в правой части уравнения стало 4 атома водорода, а в левой только 2. Чтобы уровнять число атомов водорода, необходимо в левой части уравнения перед водородом поставить коэффициент 2. Т. к.

мы уровняли число всех атомов в левой и правой части уравнения, то теперь ставим не стрелку, а знак равенства.

Для правильного подбора коэффициентов в уравнении реакции следует выполнять некоторые условия:

· Перед формулой простого вещества Можно записывать дробный коэффициент. Например, в реакции горения бутана:

С4Н10 + О2 → СО2 + Н2О. Перед формулой СО2 ставим коэффициент 4, т. к. в реакцию вступает 4 атома углерода, перед формулой воды ставим коэффициент 5, т. к. в реакцию вступает 10 атомов водорода.

В результате реакции образуется 13 атомов кислорода, а до реакции 2 атома, значит перед формулой кислорода необходимо поставить коэффициент 6,5. А так как, коэффициент показывает не только число атомов, но и молекул, то следует удвоить коэффициент в уравнении.

Получается, уравнение будет иметь вид: 2С4Н10 + 13О2 → 8СО2 + 10Н2О.

· Если в схеме реакции есть соль, то Сначала уравнивают число ионов, образующих соль. Например, в результате реакции фосфорной кислоты и гидроксида кальция образуется соль – фосфат кальция и вода.

Н3РО4 + Са(ОН)2 → Са3(РО4)2 + Н2О. Эта соль состоит из фосфат-ионов с зарядом 3- и ионов кальция с зарядом 2+. Уравняем их число, записав перед формулой фосфорной кислоты коэффициент 2, а перед формулой гидроксида кальция – коэффициент 3.

· Если в схеме реакции есть атомы водорода и кислорода, то Сначала уравниваются атомы водорода, а только потом кислорода.

Из предыдущей схемы видно, что в левой части уравнения 12 атомов водорода, в правой – только 2, значит, перед формулой воды необходимо поставить коэффициент 6. Подсчитаем число атомов кислорода.

До реакции их 14, после реакции тоже 14. Поэтому можно вместо стрелки поставить знак равенства.

· Если в схеме реакции имеется несколько формул солей, то Начинать уравнивание следует с ионов, входящих в состав соли, содержащей большее их число. Например, в реакции нитрата бария и сульфата алюминия образуется две соли – сульфат бария и нитрат алюминия.

Наибольшее число ионов содержит соль – нитрат алюминия, поэтому сначала нужно уравнять ионы, которыми образована эта соль, т. е. ионы алюминия и нитрат-ионы. Ba(NO3)2 + Al2(SO4)3 → BaSO4 + Al(NO3)3. У алюминия заряд 3+, у нитрат-ионов – 1-. Поэтому в левой части уравнения перед формулой Ba(NO3)2 ставим коэффициент 3.

Перед формулой Al2(SO4)3 нужно поставить коэффициент 1, но он не ставится. Уравниваем остальные ионы. Ионов бария до реакции 3, после реакции 1, поэтому перед формулой BaSO4 ставим коэффициент 3, нитрат-ионов до реакции 6, поэтому в правой части уравнения перед Al(NO3)3 ставим коэффициент 2.

Число атомов алюминия до и после реакции одинаково, т. е. 2. Ионов бария и сульфат-ионов до реакции и после реакции одинаково – по 3.

· Если число атомов какого-то элемента в одной части схемы уравнения четное, а в другой нечетное, то необходимо Перед формулой с нечетным числом атомов поставить коэффициент 2, а затем уровнять число всех атомов. Например, расставим коэффициенты в реакции алюминия с кислородом. Al + O2 → Al2O3.

В результате реакции образуется оксид алюминия – Al2O3. Число атомов кислорода до реакции четное, т. е. равно двум, а после реакции нечетное – 3. Поэтому перед формулой оксида алюминия ставим коэффициент 2.

В результате у нас стало 6 атомов кислорода после реакции, значит, в левой части уравнения перед формулой кислорода ставим коэффициент 3. Начинаем уравнивать число атомов алюминия до и после реакции. До реакции 1 атом, после реакции – 4. Следовательно, в левой части уравнения перед формулой алюминия ставим коэффициент 4.

Теперь число атомов каждого химического элемента в левой и правой части схемы уравнения одинаково, и стрелку следует заменить знаком равенства.

Полный комплект материалов Химия 8 класс

Источник: https://poiskvstavropole.ru/2018/02/10/kak-reshat-uravneniya-reakcij-po-ximii-8-klass-videourok/

Ссылка на основную публикацию