Как найти высоту треугольника

Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое высота треугольника?

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Давай нарисуем:

Как найти высоту треугольника

На этом рисунке   – высота.

Но иногда высота ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.

И тогда получается так:

Как найти высоту треугольника

В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны. Как же решать задачи, в которых участвует высота? Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.

Давай попробуем.

Вот есть, скажем, задача:

В треугольнике   с тупым углом   проведена высота  . Найти  , если  ,  ,  .

Решаем:

Как найти высоту треугольника Смотри: из-за того, что угол   – тупой, высота   опустилась на продолжение стороны  , а не на саму сторону.

Теперь давай увидим во всём этом два прямоугольных треугольника.

Смотри их целых два:

Как найти высоту треугольника

  • Применяем теорему Пифагора к треугольнику  :
  •  , то есть  ;  .
  • А теперь теорема Пифагора для  :
  •  ; то есть  ;  .
  • Теперь осталось только заметить, что  .
  • Нашли!

А теперь давай зададимся вопросом: а сколько вообще высот у треугольника? Конечно, три! И вот, есть такое утверждение, доказывать которое мы здесь не будем, но знать его нужно, тем более, что запоминается оно просто:

В любом треугольнике все три высоты (или их продолжения) пересекаются в одной точке.

Смотрим, как это бывает:

a) Сами высоты пересекаются:

Как найти высоту треугольника

b) Пересекаются продолжения:

Как найти высоту треугольника

Ну вот, про высоту и запоминать-то нужно всего ничего:

  • Задача про высоту часто решается с помощью знаний о прямоугольном треугольнике.
  • Три высоты (или три продолжения) пересекаются в одной точке. (Но! Это НЕ центр НИКАКОЙ окружности )

Высота треугольника. средний уровень

Высота треугольника – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Как найти высоту треугольника

Обрати внимание, что, в отличие от биссектрисы и медианы, высота может находиться вне треугольника. Вот так, например:

Как найти высоту треугольника

Немного о терминологии:основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).

Задачи, связанные с высотой, часто решаются при помощи знаний о прямоугольном треугольнике. Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.

В треугольнике проведено две высоты

Как найти высоту треугольника

Первый «неожиданный факт»:

Почему бы это? Да очень просто! У них общий угол   и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

Как найти высоту треугольника Здесь тоже подобие по двум углам:   (как вертикальные) и по прямому углу.

Третий, по–настоящему неожиданный факт:

Вот это уже интереснее, правда? Давай разбираться, почему так.

  • Во-первых, конечно, у этих треугольников есть одинаковый (и даже общий) угол  .
  • А во–вторых …ты помнишь ещё первый «неожиданный» факт? Ну, что  ? Вспоминаем и применяем!

Запишем отношения соответствующих сторон.

Итак,  .Следовательно,  

Перепишем по–другому:  

Ух, да это же – отношение сторон для треугольников   и  !

В итоге мы получили, что у треугольников   и  

  1. Угол   – общий;
  2. Отношение сторон, заключающих этот угол – одинаковы:  .

Значит, мы получили, что:

Но самое интересное ещё впереди!

Каков же коэффициент подобия этих треугольников? То есть чему же равно это самое отношение  ?

Рисуем:

Где наши знания о прямоугольном треугольнике? Что такое  ? Катет, прилежащий к углу  . А что такое  ? Гипотенуза!
  1. Значит,  .
  2. Потрясающе, не правда ли?
  3. Давай сформулируем ещё раз, чтобы лучше запомнить:

Ну вот, две высоты в треугольнике рассмотрены. А теперь…

В треугольнике проведены три высоты

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

  1. Треугольник остроугольный – тогда пересекаются сами высоты 
  2. Треугольник тупоугольный – тогда пересекаются продолжения высот

Что же полезного мы ещё не обсудили?

Угол между высотами

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Итак, нам хотелось бы найти  . Смотрим на  . Замечаем, что наш   – внешний угол в этом треугольнике. Значит,  .
Читайте также:  Как увеличить ягодицы естественным путем

Чему же равны   и  ?

Смотри: из   выходит, что  . Конечно, таким же образом из   получается, что  .

Теперь  .

Но что же это такое? Ведь сумма угла углов треугольника —  ! Значит,  .

Итак, что получилось?

Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

А как же дело обстоит в тупоугольном треугольнике? Давай смотреть…очень внимательно!

Представим, что у нас «главный» не  , а  .

Тогда оказывается, что прямые  ,   и   – высоты в  . Но   уже остроугольный (так как все высоты оказались внутри), а про остроугольный треугольник мы уже всё знаем:  . НО!  

Значит, для тупоугольного треугольника:

И ещё кое–что:

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника. Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести. И тогда, если ты будешь точно знать, например? что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

Высота треугольника. коротко о главном

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Три высоты любого треугольника пересекаются в одной точке.
  • Высоты треугольника обратно пропорциональны сторонам, на которые они опущены:  .
  • Способы вычисления длины высоты, проведенной к стороне BC:
  • 1) Через сторону и угол треугольника:  .
  • 2) Через все 3 стороны треугольника:
  •  ,
  • где   — полупериметр треугольника:  .
  • 3) Через сторону и площадь треугольника:  .
  • 4) Через стороны треугольника и радиус описанной окружности:  ,
  • где   — радиус описанной окружности.

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

  1. Проблема в том, что этого может не хватить…
  2. Для чего?
  3. Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.
  4. Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это — не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но, думай сам…

  • Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?
  • НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.
  • На экзамене у тебя не будут спрашивать теорию.
  • Тебе нужно будет решать задачи на время.  

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

  1. Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.  
  2. Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
  3. Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.
  4. Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.
  5. Как? Есть два варианта:
  6. Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.
  7. Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.
Читайте также:  Как играть на варгане

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Удачи!

Источник: https://youclever.org/book/vysota-2

Найти наибольшую высоту треугольника

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. Наименьшая высота — та, которая проведена к наибольшей из сторон треугольника.

  • Чтобы найти наибольшую высоту треугольника, можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).
  • Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.
  • Задача 1.
  • Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

Как найти высоту треугольника

  1. Дано:
  2. ∆ ABC,
  3. AC=7 см, AB=8 см, BC=9 см.
  4. Найти: наименьшую высоту треугольника.
  5. Решение:

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

Как найти высоту треугольника

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. Площадь треугольника по сторонам можно найти с помощью формулы Герона. Поэтому

  •     Как найти высоту треугольника
  • где
  •     Как найти высоту треугольника
  • Вычисляем:
  •     Как найти высоту треугольника
  •     Как найти высоту треугольника
  •     Как найти высоту треугольника
  •     Как найти высоту треугольника
  • Ответ:
  • Задача 2.
  • Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

Как найти высоту треугольника

  1. Дано:
  2. ∆ ABC,
  3. AC=25 см, AB=11 см, BC=30 см.
  4. Найти:
  5. наибольшую высоту треугольника ABC.
  6. Решение:

Как найти высоту треугольника

  • Наибольшая высота треугольника проведена к его наименьшей стороне.
  • Значит, нужно найти высоту CD, проведенную к стороне AB.
  • Для удобства обозначим
  • BC=a,
  • AC=b,
  • AB=c,
  • CD=hc.
  • Вычисляем:
  • Ответ: 24 см.

Источник: http://www.treugolniki.ru/najti-naibolshuyu-vysotu-treugolnika/

Как найти высоту треугольника

Как найти высоту треугольника

Как найти высоту треугольникаВысота треугольника это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение (сторона, на которую опускается перпендикуляр, в данном случае называется основанием треугольника).

В тупоугольном треугольнике две высоты падают на продолжение сторон и лежат вне треугольника. Третья внутри треугольника.

В остроугольном треугольнике все три высоты лежат внутри треугольника.

В прямоугольном треугольнике катеты служат высотами.

Как найти высоту по основанию и площади

Напомним формулу для вычисления площади треугольника. Площадь треугольника вычисляется по формуле: A = 1/2bh.

  • А — площадь треугольника
  • b — сторона треугольника, на которую опущена высота.
  • h — высота треугольника

Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.

Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае «‘А = 20″‘, ‘»b = 4′».

Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

В нашем примере: 20 = 1/2(4)h

20 = 2h
10 = h

Как найти высоту в равностороннем треугольнике

Как найти высоту треугольникаВспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника.
Например, рассмотрим равносторонний треугольник со стороной 8.

Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника!

Читайте также:  Как добавить кнопку на сайт

Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.

Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

42 + b2 = 82
16 + b2 = 64

b2 = 48

Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

b = √48 = 6,93

Как найти высоту с помощью углов и сторон

Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь — буквой «S».

Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.

Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).

Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.

Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.

Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).

Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.

Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.

Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.

Источник: https://pronto-costo.info/kak-najti-vysotu-treugolnika/

Как найти высоту треугольника?

⇐ ПредыдущаяСтр 98 из 157Следующая ⇒

От строгих определений никуда не деться, поэтому придётся приворовывать из школьного учебника:

Высотой треугольника называется перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

То есть, необходимо составить уравнение перпендикуляра, проведённого из вершины к стороне . Данная задача рассмотрена в примерах №№6,7 урока Простейшие задачи с прямой на плоскости. Из уравнения снимаем вектор нормали . Уравнение высоты составим по точке и направляющему вектору :

Обратите внимание, что координаты точки нам не известны.

Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты составим по точке и угловому коэффициенту (см. начало урока Уравнение прямой на плоскости):

  • Длину высоты можно найти двумя способами.
  • Существует окольный путь:
  • а) находим – точку пересечения высоты и стороны ; б) находим длину отрезка по двум известным точкам.
  • Но на уроке Простейшие задачи с прямой на плоскости рассматривалась удобная формула расстояния от точки до прямой. Точка известна: , уравнение прямой тоже известно: , Таким образом:

5) Вычислим площадь треугольника. В пространстве площадь треугольника традиционно рассчитывается с помощью векторного произведения векторов, но здесь дан треугольник на плоскости. Используем школьную формулу: – площадь треугольника равна половине произведения его основания на высоту.

В данном случае:

⇐ Предыдущая93949596979899100101102Следующая ⇒

Date: 2015-04-23; view: 552; Нарушение авторских прав

Источник: https://mydocx.ru/1-1806.html

Ссылка на основную публикацию